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ABSTRACT

We have recently shown that a 'sphere+disk' geometry Compton corona model provides a good description
of Rossi X-ray Timing Explorer (RXTE) observations of the hard/low state of Cygnus X-I. Separately, we

have analyzed the temporal data provided by RXTE. In this paper we consider the implications of this timing
analysis for our best-fit 'sphere+disk' Comptonization models. We focus our attention on the observed Fourier
frequency-dependent time delays between hard and soft photons. We consider whether the observed time delays
are: created in the disk but are merely reprocessed by the corona; created by differences between the hard and
soft photon diffusion times in coronae with extremely large radii; or are due to 'propagation' of disturbances
through the corona. We find that the time delays are most likely created directly within the corona; however, it is
currently uncertain which specific model is the most likely explanation. Models that posit a large coronal radius
[or equivalently, a large Advection Dominated Accretion Flow (ADAF) region] do not fully address all the details
of the observed spectrum. The Compton corona models that do address the full spectrum do not contain dynamical
information. We show, however, that simple phenomenological propagation models for the observed time delays
for these latter models imply extremely slow characteristic propagation speeds within the coronal region.

Subject headings: accretion m black hole physics -- Stars: binaries -- X-rays:Stars

1. INTRODUCTION

In a previous paper (Dove et al. 1998, hereafter paper I) and
•_" in a companion paper to this work (Nowak et al. 1998a, here-

after paper II) we have presented analysis of a 20ksec Rossi
X-ray Timing Explorer (RXTE) observation of the black hole

_, candidate Cygnus X-1. Using self-consistent numerical models
of a hot spherical corona surrounded by a cold, geometrically
thin disk, we were able to describe successfully the spectrum

As discussed in paper II, hard photons in Cyg X-I are seen
to lag behind soft photons with a time delay that is dependent
upon Fourier frequency (see also Miyamoto & Kitamoto 1989;
Miyamoto et al. 1992; Cui et al. 1997; Crary et al. 1998). Com-
paring the (0-3.9 keV) band to the (14.1-45 keV) band, the time
delays are approximately cx f-o7 and range from _ 2 x 10-3-
0.05 s. A more detailed study of these time delays will be the
focus of this work. Specifically, we wish to understand what

_,_ ofCyg X-1 over a broad range in energy, 3-200keV (paper I;

see also Dove et al. 1997). We derived an optical depth for the
spherical corona of r = 1.6-4- 0.1 and an average temperature of

_'_ kT = 87 4- 5 keV (reduced X 2 for the fit was 1.56; paper I).
¢_ Timing analysis (paper II) showed that our observation of

the hard state of Cyg X-1 was similar to previous hard state
observations of this object (Miyamoto & Kitamoto 1989; Bel-
loni & Hasinger 1990a; Belloni & Hasinger 1990b; Miyamoto
et al. 1992); however, we were able to extend our analysis to
a decade lower in Fourier frequency and half a decade higher
in Fourier frequency as compared to most previous observa-
tions. Cyg X-1 showed root mean square (rms) variability

30% characterized by a power spectral density (PSD) that
was nearly fiat between 0.02--0.2Hz. The PSD was approxi-
mately cx f-I between _ 0.2-2Hz, while the power law index
of the 2-90 Hz PSD was seen to increase from _ -I .7 to _ -1.4

between the lowest and highest energy bands. The coherence
function, rarely presented for most previous observations (al-
though see Vaughan 1991; Vaughan & Nowak 1997; Cui et al.
1997), was remarkably close to unity over a wide range of fre-
quencies. We also considered the Fourier frequency-dependent
time delay between soft and hard photons.

leads to this factor of 20 range in timescales, and we consider
models where the time lags are: created within the outer ac-
cretion disk (§2); created via photon diffusion in an extremely
large corona (§3); or are due to wave propagation (§4).

As the basis for our discussions, we will for the most part
take as our straw man model the 'sphere+disk' Comptonization
model that we considered in paper I. We illustrate the geome-
try of this model in Figure 1. This model has a uniform coro-
nal heating rate, nearly uniform density structure, but a non-
uniform temperature structure. The seed photons for Comp-
tonization are due to (reprocessed and direct) soft radiation
from the outer, thin disk. This model does not include dynam-
ical information. The Advection Dominated Accretion Flow

(ADAF) models have a similar geometry, as shown in Figure 1,
but they model the accretion dynamics as well (Abramowicz
et al. 1995; Narayan & Yi 1994; Narayan 1996; Esin, McClin-
took & Narayan 1997). For ADAFs, a substantial portion of the
accretion energy is advected into the black hole, potentially at a
large fraction of free-fall speeds, in the form of thermal energy.
(The density profile of matter in free-fall is oc/t'-3/2.) The ad-
vective inner regions also produce cyclo/synchrotron photons,
which are assumed to be the seed photons for Comptoniza-
tion. Another model that we shall discuss is the Comptonization
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RXTEObservation of Cygnus X-I: III.

model of Kazanas, Hua & Titarchuk (1997), hereafter referred

to as KHT (see also Boetcher & Liang 1998). This model pos-
tulates a large spherical corona with a radial density profile typ-
ically oc R -3/2 ---, R -1 , but uniform temperature structure. The
seed photons for Comptonization are isotropic and can origi-
nate either within the central regions of the corona (KHT), or
externally (Boetcher & Liang 1998). Note that these models do
not consider detailed flow dynamics.

In order to understand how these models might lead to the
observed time delays, let us consider some of their characteris-
tic timescales. We shall take the fiducial radius of the corona (or
inner, advective region) to be R = 50 GM/c 2, with M = 10 M o.
(We shall adopt M = 10 M o throughout the rest of this paper.)
We then have the following characteristic timescales. The radial
light-crossing time.scale, tLC, is 2.5 x 10-3 S, which is compara-
ble to the shortest time lags. For an 87 keV Compton corona
the radial sound crossing time, tsc = 5 x 10-3 s. The free-fall
timescale, tw, relevant for the ADAF models, is 8.5 x 10 -3 s and
is proportional to R312. All three of these time,scales are mainly
relevant for the shortest time delays. In order for them to be
applicable to the longest time delays, one needs to consider a
radius of 103 GM/c 2 for the light-crossing timescale and a ra-
dius of_ 160 GM/c 2 for the free-fall timescale. (Some ADAF
models do posit a large radius for the advective region; Narayan
1996; Esin, McClintock & Narayan 1997.) A single one of
these mechanisms can explain the observed dynamic range in
time delays only if it samples a comparably large range in radii.

The viscous diffusion timescale is _ R2/o, where v is the
kinematic viscosity. Taking an a-disk model, o _ aHcs, where
H is the disk thickness, and cs is the speed of sound (cf. Frank,
King & Raine 1992). Using the speed of sound from our best
fit corona model and taking H _ R and a _*0.1, the viscous dif-
fusion time, tD, is approximately 0.03 s, which is comparable to
the longest time lags. The Keplerian period at R = 50 GM/c 2
is tK _ 0.1 S, and is also comparable to our longest time de-
lays. All of the above characteristic timescales, along with the
observed time lags, are presented in Figure 2.

We see that there are a range of characteristic timescales
comparable to both the shortest and longest observed time lags.
The latter are perhaps the more difficult to understand theoreti-
cally. Two extremes for explaining the longest time lags are: a
small radius and a slow mechanism (e.g., viscous diffusion); or
a fairly large radius and a fast mechanism (e.g., light or sound
speed propagation). The fact that there is extremely high co-
herence between the soft and hard bands (cf. paper II), even at
frequencies near 0.1 Hz where we see the longest time delays,
makes it unlikely that a combination of these two possibilities
is at work. (Even individually coherent processes will appear
incoherent when summed, unless each process yields the same
transfer function from soft to hard; Vaughan & Nowak 1997).

In this paper, we consider both of the above possibilities. In
section 2 we calculate the effect that coronal 'reprocessing' has
on time delays that are intrinsic to the soft X-ray seed photons.
We explore this possibility, first discussed by Miller (1995) and
Nowak & Vaughan (1996), using our best-fit coronal model of
paper I. In section 3, we consider the suggestion of KHT that
the time delays are created by Compton scattering in a corona
that extends several decades in radius. We present simple, phe-
nomenological propagation models in section 4. We use these
models to show that the time delays can have a complicated fre-
quency dependence even under very simple assumptions. We
furthermore discuss the characteristic propagation speeds that
such models imply. We present our conclusions in section 5.

2. TIME DELAYS INTRINSIC TO THE SEED PHOTONS

As discussed in paper II (and references therein), one natu-
rally expects that the hard photons lag the soft photons if the
high energy spectrum is mainly due to Comptonization. The
time delay is due to the fact that the hard photons undergo sev-
eral more scattering events than the soft photons. Such time
delays should approximately depend upon the logarithm of the
energy (paper II, and references therein), and should be of order
the light crossing time of the corona. As was first pointed out
by Miyamoto & Kitamoto (1989), and shown in Figure 2 above,
this is considerably shorter than the longest observed delays.

This fact led Miller (1995) to suggest that the time lags might
be intrinsic to the seed photons for Comptonization, and that
the input time delay's frequency dependence (although not am-
plitude) might be preserved by Comptonization. As discussed
by Miller (1995) and elaborated upon by Nowak & Vaughan
(1996), the Fourier frequency-dependence of the time delay is
preserved, typically at low frequency, if the difference between

the input and output photon energies is not too great. The am-
plitude of the time delay, however, tends to be decreased in the
scattering process, perhaps substantially so (Nowak & Vaughan
1996). A constant time delay is introduced typically at high
Fourier frequency. The amplitude of this time lag 'shelf' is
given by the difference of the mean diffusion times through the
Compton cloud for the two energy bands being compared, and
thus should depend logarithmically upon energy (Pozdnyakov,
Sobol & Sunyaev 1983; Miller 1995; Nowak & Vaughan 1996).
In addition to the introduction of a constant time delay at high
Fourier frequency, one also expects that the intrinsic PSD of the
seed photons will be attenuated, especially at high frequency
(Bralnerd & Lamb 1987; Kylafis & Klimis 1987; Wijers, van
Paradijs & Lewin 1987; Stollman et al. 1987; Bussard et al.
1988; Kylafis & Phinney 1989; Miller & Lamb 1992; Miller
1995; Nowak & Vaughan 1996).

Given a source of seed photons and a Comptonization model,
one can calculate these effects (Miller 1995; Nowak & Vaughan

1996). Take a discretely sampled seed photon lightcurve, sl t},
where i denotes the time bin and [k] denotes the energy band.

The output lightcurve, h_tl, is measured at times j and in energy
band [l]. The two can be related by an equation of the form

h_t] _ r[tk].it]= __,j_ _j , (1)
k

where _:] describes the linear transfer properties of the Comp-

tonizing medium in both time (i--+ j) and energy ([k] --+ Ill) (cf.
Nowak & Vaughan 1996, and the Appendix below). The Comp-
ton corona can be described by such a linear transfer function
if the coronal structure is stationary, which would also imply
a unity coherence function measured between the output bands
(Nowak & Vaughan 1996).

In Fourier space, eq. (1) can be written as

= z.._-= _= ' (2)
k

where capital letters denote discrete Fourier transforms, m de-
notes the discrete frequency bin, and R_ kl is the transform of

a column of _] (i.e., i held fixed and j free to vary; Nowak
& Vanghan 1996). We can then relate the measured PSD and
cross power spectrum (CPD) to the input PSD and CPD by

HmIII* HIM jCttt]* Rlnk] {.q_t]_ 2
"'m = E"m °'m \--m /

k
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FIG. !.-- Geometries for recent models of Cyg X-I . Left: Sphere+disk geometry, as considered by Dove et al. (1998) (paper 1). The seed
photons for Comptonization come from the outer disk. The central corona has a uniform heating rate and seed electron density but a non-uniform

temperature structure. (cf. Dove, Wilms, & Begelman 1997). Middle: Geometry considered by Kazanas, Hua, & Titarchuk (1997). The seed

photons for Comptonization are isotropic and arise from an unspecified source within the central region of the system. The corona has a spherical

structure with a typically R -3/2 --* R -l density profile, but uniform temperature structure. Right: Advection Dominated Accretion Flow (ADAF)

geometry (cf. Narayan 1996). The seed photons for Comptonization are cyclo/synchrotron photons that originate within the advective inner region.

A cylindrical symmetry approximation for the structure is often taken.
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FIG. 2.-- RXTE observations of time delays between the (0-3.9 keV) and (14.1--45 keV) lightcurves of Cyg X-I. Diamonds indicate where

the hard lags the soft, and stars indicate where the soft lags the hard (paper II). Lines represent characteristic timescales for a coronal radius of
50 GM/c 2 with M = 10 Mo. Solid line is the radial light crossing timescale (tLC); long dashed line is the radial sound crossing time (tsc); short

dashed line is the free-fall timescale (t_); dash dot line the viscous diffusion timescale for a hot, geometrically thick cloud (to); and the dash triple

dot line is the Keplerian orbital period for a thin disk (tr).
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rlk]
Given a Comptonization model we can readily calculate r)i ,

which can then easily be Fourier transformed to yield R_ kl.
As described in the Appendix, we have calculated the transfer

functions for our best fit Comptonization model of paper I. We
use these transfer functions to assess the effect of our Compton
corona model on an input white noise source with an intrin-
sic time delay between soft and hard photons that is oc f-]. In

our model of paper I, 25% of the seed photons come from en-
ergies < 40.4eV, 50% come from energies < 115eV, and 75%
come from energies < 214.4 eV. We choose these three energies
as seed photon energies, and furthermore we impose a constant
Fourier phase lag of Ir/2 between the 214.4 eV and 115 eV vari-
ability, as well as between the 115eV and 40.4eV variability.
The resulting phase lag of _r between the 214.4eV and 40.4 eV
variability is the maximum allowed phase lag ! between any two
energy bands (see Nowak & Vaughan 1996, and paper II). We
also choose the amplitude of the variability to be identical for
all three seed photon energy bands.

In Figure 3 we present the result of passing such white noise
variability through our Comptonization model of paper I. As an
example, we present theoretical time delays and PSD for the (2-
4keV) band compared to the (12-50keV) band. (Neutral hy-
drogen column density is not included in these theoretical cal-
culations of time delays.) We hold all parameters of the Comp-
tonization model fixed, including the temperature of the seed
photons from the disk, to the values of paper I; however, we

vary the physical radius of the corona. Specifically, we consider
radii of 30 GM/c 2, 50 GM/c 2, 150 GM/c 2, and 500 GM/c 2. A
number of results are immediately apparent from these figures.
• First, the largest physically allowed phase lag between the
214.4eV and 40.4eV variability was still too small to repro-
duce the majority of the observed time delays. Thus the hy-
pothesis of Miller (1995) and Nowak & Vaughan (1996) that the
time delays could be intrinsic to the disk appears to be wrong.
As discussed by Nowak & Vaughan (1996), such a large in-
put phase lag is required because of the great disparity between
the input energy (_ 150 eV) and the output energies (_ 3 keV,
20keV) 2. The required input phase lag can be decreased if the
temperature of the seed photons is increased; however, this is
not allowed by the energy spectral modeling (paper I). Further
argument against the hypothesis is garnered from the fact that
the calculated time delays do not depend logarithmically upon
energy, contrary to the observations (paper II, and references
therein). The theoretical model does show a logarithmic en-
ergy dependence at high Fourier frequency, where a shelf in the
theoretical time delay is clearly seen; however, the energy de-
pendence weakens for lower frequencies. As shown in paper
II (Figure 12), the data show a logarithmic energy dependence
even at 0.3Hz. We are thus forced to the conclusion that the
majority of the observed time delays, in one fashion or another,
must be created within the corona if our basic model for the

energy spectrum is correct. However, this is not the same as
saying that the variability (PSD) must be directly created in the

corona (cf. §3).

We do expect one effect of Comptonization to remain, even
if the time lags are created within the corona itself, namely
the time lag shelf at high frequency. After one scatter, a pho-
ton has essentially lost all information as to the spatial loca-
tion of its origin. Thus whether the sex.d photons come from
an outer disk or whether they are internal to the corona (such
as for ADAF models that invoke cyclo/synchrotron seed pho-
tons; Narayan 1996; Esin, McClintock & Narayan 1997), the
difference in diffusion times to reach two different output en-
ergies will still lead to a time lag shelf. The shortest observed
time lag should be no smaller than this theoretically expected
shelf. Such shelves clearly are seen at high Fourier frequency
in the theoretical models presented in Figure 3. They range
from 2 x 10 -3 s for R = 30 GM/c 2 to 0.04 s for R = 500 GM/c 2.
The observational data, on the o_er hand, do show a flatten-

ing in the time delays in the 10-:,0Hz range. If we take this
as the upper limit to an allowed theoretical time delay, then the
maximum allowed coronal radius for our model of paper I is

30 GM/c 2. There is also an observed flattening of the time

delay in the region of 0.7-3 Hz. If we take this as the upper
limit to an allowed theoretical time delay, then the maximum
allowed coronal radius is _ 150 GM/c 2.

Which of these observational limits should we choose, and

why do we ignore the even shorter time delays above 30 Hz?
As discussed in paper II, the time delays above 30Hz are espe-
cially subject to noise as both the PSD and the coherence func-
tion are decreasing in this regime. We again note that there is a
'hardening' of the 2-90 Hz PSD with increasing energy (paper
II), coincident with this coherence loss. We postulated that this

was indicative of additional, multiple variability components
that were being created directly within the corona. One specu-
lation would be that these timescales are probing flares that are
'feeding' the corona on dynamical timescales. Without being
able to identify the physical nature of these hypothesized ex-
tra variability components, we do not know what their intrinsic

time delays are. We do know, however, that multiple uncorre-
lated variability components will lead to a loss of coherence,
and that the net observed time delay in such regions will be
a combination of many intrinsic lags and possibly even leads
(Vaughan & Nowak 1997; paper II, §3.1). Thus an incoherent
frequency range can have observed time delays less than the
minimum theoretically expected time lag shelf.

We should then choose the maximum allowed theoretical

time lag shelf to be the minimum time delay observed in a re-
gion of near unity coherence. For our observations of Cyg X-l,
this would be at _ 10Hz, and thus this limits us to a maxi-
mum coronal radius of _ 30 GM/c 2. This is consistent with
the limits on the PSD as well (cf. Figure 3). Such a small
corona has little effect on the PSD in the 0.02-2 Hz regime,
where PSD for all five observed energy bands (paper II) have

roughly the same shape. We note, however, that based upon
the PSD alone, especially if the PSD above _ 10Hz is con-
taminated by other sources of variability, a much larger coronal
radius (_ 150 GM/c 2) is tolerated.

It is tempting to associate the various 'flattened' regions

tBy convention,the Fourierphase lags an:takento be between [-.a-,7r].Thusa timedelay thatleadsto aphaselag of 37r/2 will be measuredas aphase lead of
7r/2. We choose the maximumphaselag of_ in orderto determinethe maximumpossibleoutputphaselag.

2Imaginethatwe have input energybands,Eaand Eb, each of whichscatterintotwo observedoutputbands,El and E2. If the inputenergybandsscatteredinto
theoutputenergybandsin equal proportion(i.e., [F__ El]/lEa --_E2]= [Eb--+EI]/[Eb --_E2]) then the intrinsic timedelayswould becompletely wipedout. In
realitythe scatleringis slightly asymmetric,which allows a remnant of an input timedelay to remain. If E_ < Eb and El < E2,a slightly smallerproportionof Ea
scattersintoE2, as compared to Ebthat scattersinto E2. Forfixed inputenergybands,this asymmetry decreaseswith increasing outputbandenergy,and hencethe
intrinsictime delaysaremorecompletely erased (cir.Nowak& Vanghan1996).
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(_ 0.1-0.5 Hz, _ 0.7-3 Hz, and _ 10-30Hz) seen in the time

delays of Figure 3 with time lags shelves due to Comptoniza-
tion. This would imply a Compton corona with characteristic
radii of _ 30 GM/c _, _ 150 GM/c a, and _ 500 GM/c 2. The

(nearly) uniform density coronal model of paper I cannot pro-
duce such a range of time lags. However, recently KHT have
proposed a coronal model with an R -1 density profile that can

produce a broad dynamic range of time delays. We consider
such models in the next section.

3. TIMEDELAYS CREATEDBY THE CORONA

In the model of KHT, as well as the models of Boetcher &

Liang (1998), both the observed power spectral densities and
time lags are the result of passing an isotropically emitted white
noise (i.e. flat) spectrum through an extended Comptonizin_
medium with a power-law density profile. The case of p _x R-'
represents equal optical depth per decade of radius, and there-
fore roughly equal probability of seed photons from an isotropic
source scattering within any given radial decade. This leads to a
power-law shape for the observed PSD, as opposed to the fairly
sharp cutoff seen in Figure 3. Time delays are created by the
difference in diffusion times through the corona for hard and

soft photons. Photons that scatter over large radii will have their
intrinsic high frequency variability wiped out (as in Figure 3);
therefore, any observed high-frequency variability must be due
to photons that scattered only within the inner radial regions.

High frequency variability thus exhibits short time delays be-
tween hard and soft photons. Low frequency variability poten-
tially can be observed from photons that have scattered over
large radius. Low frequency variability thus exhibits longer
time delays between hard and soft photons. The time delay at
all Fourier frequencies is expected to increase as the logarithm
oftbe ratio of the hard to soft energy, as is observed (cf. paper
II, and references therein). For quantitative agreement with the
observations, KHT require coronal radii of O(104 GM/c2).

The main objection to this scenario is that the source of soft
seed photons is not fully specified. ASCA observations of
the hard/low states of Cyg X-1 (Ebisawa et al. 1996) and of
GX339-4 (Wilms et ai. 1998, in preparation) show evidence of
a 'soft excess' that is reasonably well-modeled by a multicolor

blackbody spectrum with a peak temperature of ,-- 150eV. This
temperature is suggestive of-- but not definitive evidence for--
the inner edge of an accretion disk (the putative source of the
seed photons, although see Narayan 1996; Esin, McClintock &
Narayan 1997) being at radii j_ 50 GM/c 2, as opposed to being
at the center of the corona. Both of these sources, as well as sev-
eral other low/hard state GBHC have shown evidence of weak
and narrow Fe lines at 6.4 keV (Ebisawa et al. 1996; Wilms et

al. 1998, in preparation). The properties of these lines 3 can be
explained naturally in the sphere+disk geometry.

Does a corona with a power law density profile, but with seed

photons arising from a geometrically thin outer disk, still pro-
duce the characteristic PSD and time delays as described by

KHT? To answer this question, we have created a grid of Comp-
tonization spectra with the following properties. The heating
per particle in the corona was taken to go as R -1 (i.e., propor-
tional to gravitational energy release), the density was taken to
go as R -I (i.e., the density structure chosen by KHT), and the
seed photons were taken to come from a multicolor blackbody

spectrum, with peak temperature 150 eV, originating from age-

ometrically thin outer disk. We used the same Comptonization
code as described in Dove, Wilms & Begelman (1997) and used
in paper I. Unlike the models of KHT, which were isothermal
out O(104 GM/c2), our simulations include the derivation of
the self consistent temperature structure of the corona by bal-
ancing the local Compton cooling rate with the local heating
rate (which was _x R -I ). For typical parameter values, the tem-

perature was about 72 keV above the pole of the corona, and
only 40keV at the equator near the edge of the sphere. (This
cooler temperature is due to the increased density of soft pho-
tons near the accretion disk.) We applied these models to our
RXTE spectra ofCyg X-I (of. paper I), and obtained a reason-
able fit to the data (Fig. 4). We find a best fit coronal optical
depth of 2.9, with an average coronal temperature of 58 keV.

As described in the Appendix, we again used a linear Monte
Carlo code (with the radial coronal structure taken from our best
fit nonlinear model, but excluding the pole to equator tempera-
ture gradient) to calculate the time-dependent transfer functions
for seed photon energies to transit to observed hard X-ray en-
ergies. In an analogous manner to the calculation described in
§2, we used these transfer functions to determine the effect that
the corona has on any variability inherent to the Comptoniza-
tion seed photons. In Figure 5a, we show the resulting time lags
between soft and hard X-ray variability. In Figure 5b, we show
the resulting PSD assuming a white noise power spectrum for
the variability of the seed photons. Here we take all the pho-
tons, an input blackbody with temperature kT = 150 eV, to have
a uniform initial Fourier phase. In both of these figures, we
present results for coronal radii ranging from 30-500 GM/c:.

Note that unlike the models of KIlT and Boetcher & Liang

(1998), we do not find time lags that are proportional to Fourier
period and we do not find a PSD with a power law dependence
over a wide range of frequencies. Our results are qualitatively
and quantitatively similar to the uniform (in density and heat-
ing) coronal models presented in Figure 3. Specifically, the
resulting time lag is nearly constant as a function of Fourier
frequency, and is comparable to the light crossing time across
the diameter of the entire corona. The resulting PSD (assuming
a white noise input) has a sharp cut-off as opposed to a power

law shape.
The major difference between the model presented here and

those of KHT and Boetcher & Liang (1998) is one of geome-

try. The latter models assume an isotropic source of seed pho-
tons. The models of KHT assume that the seed photons origi-
nate from interior to the corona, while the models of Boetcher

& Liang (1998) consider both internal and external illumination
of the corona. Both models, assume isotropic illumination. The

core of the corona, where the photons can undergo the scatters
on the shortest timescales and thus not suffer substantial losses

of high frequency variability power, is initially visible to the
seed photons in these models.

In our model, where the seed photons originate in a geomet-

rically thin disk exterior to the corona, the central core of the
corona subtends a very small solid angle as viewed by the disk.

The photons emanating from the disk do not isotropically illu-
minate the corona. This geometry, coupled with the fact that
our best-fit model is mildly optically thick, means that a sub-
stantial fraction of the photons must first scatter on the large
radii of the outer corona before being able to scatter within the

3Note that if the energyrelease from the coronais centrallyconcentrated, as in the ADAF models or the coronalmodel withR-l heating describedbelow, then
the Fe line places upperlimits to the coronal radius(ef. F.sin,McClintock & Narayan 1997). The fact thatFe lines are seen with equivalentwidths _ 30-40eV, even
in very low luminosityobservationsof GBHC such as Nova Muscae(Zycki, Done & Smith 1998) and GX339-4 (Wilms et al. 1998, in preparation), tends to argue
againstverylargeradiiin the sphere+diskgeometry.
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FIG. 3.-- Left: Diamonds and stars are the same time lags as shown in Figure 2. Solid lines are the theoretical time delays between the (12-50 keV)
and (2-4keV) lightcurves, assuming that the seed photons for Comptonization have an intrinsic phase lag of _r between the 40.4 eV and 214.4 eV
lightcurves. (The intrinsic time lag in the seed photons is therefore cx f-t; see text.) Right: Diamonds are the observed Cyg X-I PSD in the
(14.1-45 keV) band, compared to theoretical (12-50keV) PSD for a white noise input (arbitrary normalization). For both figures, the solid line
represents a coronal radius ofR = 30 GM/c 2, the long dashed line represents R = 50 GM/c 2, the short dashed line represents R = 150 GM/c 2, and
the dash dot line represents R = 500 GM/c 2.
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cf. paper1I.) Unlike"the ComptomzatJon"" models presented m"paper I, here the heatm"g rate per pamcle"is"oc R-I and the coronal density structure is
cxR. The best fit parameters were a total optical depth of 2.9 and an average coronal temperature of 58 keV. The reduced X2 for the fit was 1.75.
As discussed in paper I, a possible reason for the residuals in the 3-7 keV region (which are slightly larger than the systematic uncertainties in the
PCA) is our assumption of a sharp transition from thin, cold disk to thick, hot corona.
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inner radii of the corona. Thus the time lags are dominated by
the longest time delays at all Fourier frequencies.

Further differences with our model are that we consider coro-

nal heating cx R -I , we allow reprocessing of hard X-ray photons
in the geometrically thin, outer accretion disk, and we allow for
anisotropic temperatures in the corona (although in the linear
Monte Carlo code we only include the radial temperature gra-
dients). We conjecture that the primary reason the results of
KIlT (who use a uniform coronal temperature of 50 keV and
optical depth of r -- 2) are so drastically different is precisely
because of their choice of an isotropic source of seed photons.
[Boetcher & Liang (1998) show that results qualitatively sim-
ilar to those of KHT are obtained even if the isotropic source

of seed photons is exterior to the corona.] Again, the physical
nature of this source is not fully described in the work of KHT.
However, such a seed photon source geometry is qualitatively
similar to that predicted by ADAF models (Narayan 1996; Esin,
McClintock & Narayan 1997). In our model the seed photons
only 'isotropize' (as viewed by the corona) after scattering on
large radii, and therefore always exhibit the longest time delays.

4. PROPAGATIONMODELS

It has been suggested that the observed variability in Cyg

X-1 can be produced in the context of ADAF models by dis-
turbances propagating from the cold, outer disk into the hot,
advection-dominated inner region (Manmoto et al. 1996). Man-
moto et al. (1996) considered the inward propagation, and ad-

vection, of a large-amplitude, cylindrically symmetric distur-
bance. The basic concept of an inward propagating wave pre-
sented in Manmoto et al. (1996) is an intriguing one. If the
cold outer disk, which is not directly observed by RXTE, is the
source of disturbances and the inner region then responds to
these disturbance in a linear fashion, then we expect there to

be unity coherence between hard and soft photons (Vaughan &
Nowak 1997). As also discussed by Vaughan & Nowak (1997),
two-dimensional waves can reproduce some of the qualitative
features of the observed time delays.

The work of Manmoto et al. (1996) was not directly appli-

cable to Cyg X-l, however, as it only considered modulation
of the thermal bremsstrahlung emission, which is essentially
negligible in ADAF models; it did not quantitatively address
the lags between hard and soft X-ray photons; and their model
only produced modulation on order of the advective timescale,
and not on the broad range of timescales required to explain the
Cyg X-I PSD. The basic concept, however, is worth consid-
ering further. Lacking a dynamical theory associated with our
Comptonization models, we explore below the notion of prop-
agating disturbances via the use of simple phenomenological
models.

We consider two-dimensional waves not only because they

are naturally suggested by a disk geometry (i.e., the hypothe-
sized source of disturbances), but also because even in the ab-
sence of any dispersive mechanisms, two-dimensional waves
do not satisfy Huygen's principle (cf. Morse & Feshbach 1953).
This means that even in a nondispersive medium with uniform
propagation speed, we do not expect there to be a constant time
lag between hard and soft photons (cf. paper II, §5.1; Vaughan
& Nowak 1997). A 'cylindrical-symmetry' approximation has
also been used for the inner advective regions of ADAF mod-
els (of. Narayan 1996; Esin, McClintock & Narayan 1997, and
references therein). Note for the discussion that follows, much

of the qualitative behavior that we describe is specifically re-
lated to the two-dimensional nature of the waves. We therefore

would not expect the behavior described below, for example, if
the waves originated in a geometrically thick outer disk.

For simplicity, we shall consider waves propagating

cylindircally symmetrically in a medium with a uniform propa-
gation speed. Furthermore, we shall consider waves that prop-
agate inward toward a "sink" located at the origin. Take a dis-
turbance, q_(_, t), that obeys the wave equation

-_ - Cp _ k_(£,t) = -47rOs(£,t) . (4)

The sink at the origin is represented by ps(£, t), which we take to
be =_ $(x-')ps(t). That is, we will consider waves that propagate
inward from the (unobserved) outer disk, and then are absorbed

at the origin without reflection.
We can relate the disturbance, _, to the sink, ps, via an ad-

vanced Green's function (Morse & Feshbach 1953; Vaughan &
Nowak 1997). Furthermore, let us take the observed soft aria

hard iightcurves, s(t), h(t), to be the disturbance, _(._ t), mul-
tiplied by response functions, gs(x-'), gh(x-'), integrated over the
disk. Given these assumptions, the observed soft X-ray light
curve becomes:

s(t) = (270 -I/d£gs(x-')k_(£,t)

)-I / at' (t')= (27r Ps x

f drdf r gs(r) Gf(2rf, ,r) exp(-i2rfr) (5)

and similarly for h(t). In eq. (5) we have taken the sink to be
a delta-function at the origin, we have taken the soft lightcurve

response to be cylindrically symmetric, and we have written the
Green's function, GI, in Fourier space (cf. Morse & Feshbach
1953). We do this because we wish to calculate the time delays
as a function of Fourier frequency.

Using the convolution theorem (cf. Morse & Feshbach
1953), we write S(f), the Fourier transform of s(t), as

S(f) = Ps(f)21r/ dr r gs(r) Gf(2rrf , r) , (6)

where Ps(f) is the Fourier transform of ps(t). We obtain a simi-
lar expression for H(f), the Fourier transform of the hard X-ray
light curve.

The Fourier transform of tr(r), the transfer function between
soft and hard X-rays (cf. paper 1I), is then just the ratio between
H(f) and S(f). That is,

dr r gh(r) r)Gl(27rf,

Tr(f) = (7)

dr r Gf(2_rf ,gs(r) r)

Note that the above does not depend upon Ps(f). That is, we can
know the relative amplitude and phase of S(f) and H(f) with-
out actually knowing their absolute values individually. Fur-

thermore, if gs, gh, and G/do not vary with time, then Tr(f) is
constant and coherence is preserved (Vaughan & Nowak 1997;

paper II). For propagation models such as this, the observed
Fourier phase delay is simply the Fourier phase ofeq. (7), while
the time delay is this phase divided by 2rrf.

Here we point out several caveats associated with the valid-
ity of equations of the general form of eq. (7). Linearity of
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FIG. 5.-- Left: Diamonds and stars represent the same time lags as shown in Figure 2. Lines are the theoretical time delays between the
(l 4.1--45 keV) and (1-3.9 keV) lightcurves assuming that the seed photons originate in the geometrically thin outer disk and have a temperature of
kT= 150eV. Right: Diamonds are the observed Cyg X-I PSD in the (14.1-45 keV) band. Lines arc the theoretical PSD for the (14.1-45 keV) band
assuming that the kT = 150eV seed photons have a white noise power spectrum (arbitrary normalization). For both figures, the solid line represents
a coronal radius of R = 30 GM/c 2, the long dashed line represents R = 50 GM/c 2, the short dashed line represents R = 150 GM/c 2, and the dash dot
line represents R = 500 GM/c 2.

the waves is essential. Inherent in our assumption of linear-
ity is that the accretion system locally produces radiation in
response to the wave, and that the waves themselves do not
produce X-rays in the outer regions of the disk. If the waves
steepen into shocks, as for the disturbances discussed by Man-
moto et al. (1996), then a transfer function formalism will not
be valid. Furthermore, the coherence function for such a case
would not be close to unity, contrary to the observations (paper
H; Vaughan & Nowak 1997). Even with the assumption of lin-
earity, we are further relying upon the assumption of cylindrical
symmetry. There cannot be too large a variation of phase along
the azimuthal direction of the wavefront, else the inward prop-
agating wave fronts will add incoherently. [Vaughan & Nowak
(1997) show that individually coherent, linear processes can
produce a net observed incoherent process when added inco-
herently in such a manner. Nowak et al. (1998b) discuss how
such a sum of coherent processes can be used to reproduce the
small-amplitude deviations from unity coherence seen in the
lightcurve of the BHC GX 339-4.]

We shall now consider a specific example of a simple pbe-
nomenological model for wave propagation, with parameter-
ized responses of the soft and hard X-rays, that qualitatively
reproduces the time delays observed in Cyg X-1. This model
also gives us insight into the quantitative limits that one might
be able to set on the disturbance propagation speeds from com-
bined dynamical/spectral models. Taking a constant propaga-
tion speed, and solving ext. (4) in terms of separate Fourier com-
ponents (cf. Morse & Feshbach 1953), the Fourier transform of
the two-dimensional Green's function becomes

G.t-(2z'f, r) = Dr H(o2)(kr) , (8)

where k s - (27rf/Cp) 2, and H0(2) is the second Hankel function
of order zero. The second Hankel function has the appropriate
type of singularity at the origin, and is the relevant function for
waves traveling toward the origin (Morse & Feshbach 1953).

For illustration, let us take g,(r)

g,(r) o( o(r-6r°_
\ ro /

gh(r) _x o ( r--6ro _
\ ro /

where O(x) is

and gh(r) to be given by

a step-function, and a,, c_h,
GM/c :z, M = 10 M®) are constants. We shall consider two sets
of parameter values: (as = 0.06, ah = 0.024), and (as = 0.06,
<_h= 0.048). With these parameters, 95% of the soft photons
come from r _ 50 r0 and 95% of the hard photons come from
r _ 20 r0 and r _ 40 r0, respectively. The resultant phase lags
then depend upon cp, the propagation speedof the disturbances.

Results for this model and several different propagation
speeds are presented in Figure 6. As can be seen from the fig-
ure, this phenomenological model qualitatively reproduces the
functional form of the observed time lags. This is not surprising
in that the two-dimensional wave propagation Green's function
has properties similar to the 'constant phase lag' transfer func-
tion described in paper I1, §4.1 [eq. (11)]. Specifically, the con-
stant phase lag transfer function was seen to be a delta-function
plus a 7"-_ tail (i.e. most photons are simultaneous, with a frac-
tion of the hard photons lagging behind). The two-dimensional
wave Green's function in the time domain is given by a step
function, propagating at speed cp followed by a _.-]/2 tail (cf.
Morse & Feshhach 1953). As we have taken the wave to prop-
agate cylindircally symmetricaly from the outside in, and we
have taken the soft response to extend to larger radii than the
hard response, the hard naturally lags the soft. If progressively
higher energy responses have progressively smaller radial ex-
tents, the time lags will increase with energy. As the energy
generation in a disk goes as R -z, this is not an unreasonable
expectation.

The most interesting things to note about Figure 6 are the
propagation speeds required to quantitatively reproduce the
longest observed time delays. We see that propagation speeds
of O(1-10% c) are required, depending upon the degree of

, (9)

and ro (--

\ ro/
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overlap between the soft and hard X-ray response. As discussed
in §1, this is much slower than expected for Compton scatter-
ing, sound speed propagation, or gravitational free-fall. The
required velocity is increased if the degree of overlap between
hard and soft response is decreased and/or if the overall radial
extents of the responses are increased. For the former possibil-
ity, we note that we present a model where the radial extents
of the hard and soft region differ by a factor of two and a half,
and still the required propagation speed is quite low. For the
latter possibility, it is unlikely that we can greatly increase the
overall radial extents of the responses and still have sufficient
high frequency variability in the source of the disturbances. As
discussed in paper II, the PSD has the same functional form out
to _ 2 Hz in all energy bands. Therefore, the source of variabil-
ity (i.e., the initial inward propagating waves) must have power
out to at least this frequency. If we consider the dynamical
timescalc this corresponds to a radius of 135 GM/c 2. Thus it
is unlikely that we can increase the radius, and thereby increase
the required propagation speed, by more than a factor of two or
three. We note that we have tried different functional forms for

the response functions (such as step functions) than those pre-
sented in eq. (9). The results are qualitatively and quantitatively
very similar.

5. SUMMARY

In previous papers we have presented analyses of RXTE data
of Cyg X-l, where we have discussed spectral models (paper
I) and timing analysis (paper II). For the spectral models we
concentrated on 'sphere+disk' Comptonization models, as il-
lustrated in Figure 1. Such models were found to provide a rea-

sonably good description of the data over a broad energy range
(3-200keV). In paper II we presented power spectral densities
(PSD), the coherence function between hard and soft variabil-
ity (cf. Vaughan & Nowak 1997), and the Fourier frequency-
dependent time delay between hard and soft variability. In this
work we considered this time delay in light of our 'sphere+disk'
Comptonization models for the spectrum.

The simplest expectation, as first noted by Miyamoto & Ki-
tamoto (1989), is that time delays between hard and soft pho-
tons should be due to differences in diffusion times through the
Compton corona and should be nearly independent of Fourier
frequency. This is counter to the observations (paper II, and
references therein), which led Miller (1995) and Nowak &

Vaughan (1996) to suggest that perhaps the time delays arc in-
trinsic to the disk and are merely 'reprocessed' by the corona.
We explored this possibility with our Comptonization models,
and found this not to be the case. The required input phase
lags are unphysically large (_ rr), and furthermore the resulting
time delays do not have the required logarithmic energy depen-
dence (el. paper II, and references therein). This is the chief
conclusion of our paper: if the basic sphere+disk Comptoniza-
tion geometry is correct, then the time delays must be created
directly within the corona.

We then explored whether a corona with a power-law strut-

ture could reproduce the observed time delays, as was first sug-
gesled by KHT. As opposed to this work which utilized an
isotropic, central source of soft seed photons, we again con-
sidered the sphere+disk geometry. The seed photons in this
case comse from the geometrically thin, outer disk and there-
fore are not isotropic. The seed photons must first scatter on
the largest radii of the corona before they can be viewed quasi-
isotropically by the inrier regions of the corona. We found
that this 'sphere+disk' geometry, even with a power-law den-
sity profile, therefore does not reproduce either the observed
PSD or the observed time lags. We conjecture that an isotropic
source of seed photons, as viewed by the corona, is required in
order to create time lags in the manner suggested by Kazanas,
Hua & Titarchuk (1997).

KHT do not have a fully gelf-consistent model for the source
of the soft seed photons; however, their geometry is qualita-
tively similar to that of the ADAF models (cf. Narayan 1996;
F.sin, McClintock & Narayan 1997) which use synchrotron
photons from within the advective flow as the seed photons
for Comptonization (Figure 1). As for the models of KHT, the
ADAF models can require a very large coronal radius. Such
a large radius, however, poses problems with interpreting the
observed spectra of GBHC. Specifically, one typically sees a
'soft excess' with characteristic temperatures of kT _ 150 keV
(possible evidence of the accretion disk), as well as weak, nar-
row 6.4keV iron lines with equivalent widths of O(30keV)
(Ebisawa et al. 1996; Zycki, Done & Smith 1998; Wilms et
al. 1998b, in preparation). ADAF models predict 4 lower char-
acteristic temperatures for any soft excess as well as smaller
equivalent widths for the iron line, if the radius of the advective
region is as large as the O(104 GM/c 2) required to reproduce
the longest time lags.

If we take the minimum time delay (observed in a region
where the hard and soft variability are coherent with each other)
as indicative of the maximum allowed coronal radius, then the

corona must have a small 5 radius _ 30 GM/c a. This led us to
explore the possibility that the time delays are related to prop-
agation of cylindrically symmetric linear disturbances through
a small corona. [Such 'propagation models' have been con-
sidered by Manmoto et al. (1996), for example, but see our
comments in §4 above.] We concluded that if the corona is
small and the time delays are due to linear disturbances propa-
gating cylindrically symmetrically through the corona, then the
propagation speeds are extremely slow. Such slow propagation
speeds are likely inconsistent with ADAF models with advec-
tive region radii A 150 GM/c 2.

The advent of RXTE allows us to obtain a very broad band
spectrum (_ 3-200keV) and simultaneously allows us to ob-
tain temporal data on timescales comparable to the dynami-
cal timescales of the very innermost regions of GBHC sys-
tems. The spectral capabilities of RXTE have demanded an
increasing level of sophistication from Comptonization mod-
els. Combining the spectral data with the temporal data now
requires us to consider the dynamical structure of Comptoniza-
tion models as well. Currently there are two broad classes of

4Tbere has beendiscussionat mc.entscientificmeetingsof the possibility of adding 'cold blobs' of matterintothe inneradvective negionof ADAF models in order
to reproduce the observedFe line characteristics. Manyquestionsare raised by suchadditions to the ADAF model, suchas: what is the 'natural'filling factorof the
blobs?Willthe additional coolingfrom thesoft fluxcollpasethe ADAFsolutioninto a radiadvely efficientstate?CananarrowFe line, as is suggestedby the data,be
producedby blobsbeing advected with the flow? W'dlvariabilityassociated with blobs movingover a largerangeof radiistill produce nearunitycoherencebetween
soft andhard radiationas is observed?Considering these issuesis beyondthe scope of this currentwork.

5Sucha small radiusis also suggested by the timing analysis that we presentedin paperII. Specifically,the slope of the the high frequency(_ 3 Hz) PSDwas
seento flattenwith increasing photonenergy (possiblyindicative of 'feeding'the coronaon dynamicaltimescalesat radii_ 50 GM/c 2) Also, the coherencewas seen
to dropat low frequency(_ 0.02 Hz; possibly indicative of the viscous timescaleof thecool, thin accretiondisk at radii_ 50 GM/c2), as well as at high frequency
(_ lOHz).
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FIG. 6.-- Left: Diamonds and stars represent the same rime lags as shown in Figure 2. Lines are the theoretical time delays from simple
phenomenological propagation models. Left: 95% of the soft response comes from r _ 50 GM/c 2, and 95% of the hard response comes from

r _ 40 GM/c 2 (a, = 0.06, ah -- 0.048). Solid line is the theoretical time lag for cv = 0.01 c, and the dashed line is for c v = 0.1 c. Right: 95% of
the soft response comes from • _ 50 GM/c 2, and 95% of the hard response comes from • _ 20 GM/c 2 (a, = 0.06, ah = 0.024). Solid line is the
theoretical time lag for cp = 0.06 c, and the dashed line is for cp = 0.6 c.

models for the observations: ADAF models and similar coro-

nal models with large radii (e.g. Kazanas, Hua & Titarchuk
1997), or sphere+disk models with fairly small radii and (here
hypothesized) relatively slow 'propagation speeds' in the coro-
nal region. The former models require further study to show
that they agree with all aspects of the spectral data (and the
ADAF models require further work to demonstrate that they
agree with the temporal data as well), whereas the latter mod-
els, which are purely spectroscopic in nature at the moment,
need to be coupled with a viable dynamical theory. Further
RXTE observations-- coupled with future observations from
instruments such as AXAF and/or XMM to study the details of

the soft excesses and the weak, narrow iron line features-- will

likely be required to determine which of the above possibili-
ties, if any, is the most promising model for Cyg X-1 and other
similar GBHC.
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grant 50 OR 92054, and by a travel grant to J.W. from the
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APPENDIX
A. TIME LAGS IN THE SPHERE+DISK GEOMETRY

The major spectral results presented in papers I and II were based on models obtained using our non-linear Monte Carlo code
(cf. Dove et al. 1997 and references therein). It is very CPU time-consuming and difficult to use such a code to perform a study of
the temporal behavior of the sphere+disk geometry. We therefore used a separate linear Monte Carlo code for the computation of
the shots presented in this paper 6. The linear code is based on algorithms presented by Marchuk et al. (1980), Pozdnyakov, Sobol
& Sunyaev (1983), Hua (1986), and Hua (1997), Compton scattering is simulated using the relativistic scattering formulae. The
differential Klein-Nishina cross section is used in the computation of the scattering angle. The electrons are assumed to have a
relativistic Maxwellian distribution, the effect of which is taken into account in the simulation of the Compton scattering and in the
simulation of the mean free path of the photon. The code also includes the interaction of the radiation with cold matter, by making
use of the fits to the photoabsorption cross sections for the first 30 elements given by Verner & Yakovlev (1995), Verner et al. (1993)
and Band et al. (1990). Fluorescent line emission of the Fe Ka(6.4 keV), Fe K_(7 keV), Si Ka(l.7 keV), and S Ka(2.3 keV) lines
was included in the simulations using the theoretical fluorescence yields published by Kaastra & Mewe (1993).

In order to reduce the statistical noise in the emerging spectrum and in order to have a good coverage of the higher order Compton
scatterings, the method of weights was used. In this method, a photon starts out with a weight w = 1. After each propagation step
the optical depth r to the boundary of the system is computed. The probability that the photon escapes without further scatterings
is P = exp(-r). Therefore, a photon with weight wexp(-r) is added to the output-spectrum, and the rest of the photon, with weight
w[1 -exp(-r)], continues to matter within the corona. After a photon gets photoabsorbed within the accretion disk, it gets reemitted
with a new weight given by Yw, where Y is the fluorescence yield of the absorbing element and w is the weight of the photon before
the absorption, and its energy E is set to the fluorescence energy of the fluorescence line. The photon is killed if its weight goes
below a threshold, usually taken to be 10 -_. We refer to Pozdnyakov, Sobol & Sunyaev (1983), Grrecki & Wilczewski (1984), and
White, Lightman & Zdziarski (1988) for a more in-depth description of the method of weights.

61n a linear Monte Carlo code, photons are propagated one at a time through a background medium with predefmed properties, while a in a non-linear code, a

multitude of particles is used to also simulate the interaction between the radiation field and the medium, as well as interactions between individual photons, such as
photon-photon pair production.
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A photon emitted from the sphere can hit the disk and vice versa. These photons are temporarily stored and dealt with after the
code has finished with following the "primary photon". For a correct computation of the spectrum emerging from the sphere+disk
geometry, energy conservation of the initial photon has to be taken into account. Each photon escaping the sphere and hitting the
accretion disk deposits an energy wE within the disk, where E is the photon energy and w is again its statistical weight. A fraction
of this energy subsequently escapes the system in the form of Compton-reflected radiation or fluorescence lines. The rest of the
deposited energy is thermalized and finally re-emitted in the form of one or more black-body photons at the position where the
original incident photon hit the disk.

Thermalization in the accretion disk occurs primarily via photoabsorption of a photon followed by the emission of either a pho-
toelectron or an Auger electron. The typical energy for these electrons is on the order of a few keV or less. The electron then loses
its energy primarily via Coulomb interactions with other electrons. The typical relaxation timescale for thermalization is given by

(Frank, King & Raine 1992, eq. 3.32)

me2v 3 mev 2 me 112 E s12 ( E _Sl2 ( N )-l ( kT _-'t-,, 8_rNEe41nA 2kT = 23/2rrealnA NEkT "_ 10-Ss \_] 10]g-]'cm 3 \lkeV] (1)

where E = mev2/2 is the initial energy of the electron, NE the electron number density, e the elementary charge, T the temperature
of the plasma, and lnA _ 15 is the Coulomb logarithm. Since the thermalization timescale is small compared to the light crossing
time of the spherical disk and the light travel time from the accretion disk to the sphere, it can be assumed that the thermalization and
Compton reflection occur quasi-instantaneously. Consequently the time spent by the photons within the accretion disk was not taken
into account in the determination of the time lag and the thermalized photons were considered to be re-emitted at the time when they
hit the disk. The effect of thermalization is to cause "echoes" in the temporal response of the system to an initial burst of photons,
since the thermalized photons are again able to produce hard photons by Comptonization in the sphere.

In order to be able to study the effect of radially symmetric disturbances of the accretion disk on the temporal behavior of the
emerging Comptonization spectrum we computed the Green's function for photons emitted emitted from a ring of radius r. For
this paper we take r to be twice the coronal radius. The initial seed photon energy distribution was taken to be a delta-function
at a prescribed energy (40.4eV, 115 eV, and 214.4eV for the simulations shown in Figure 3, cf. §2). Those Comptonized photons,
however, that are subsequently reprocessed in the disk are taken to obey a multicolor blackbody spectrum with a prescribed maximum

3/4temperature (here, 150eV) and radial temperature dependence <xR- . We chose this procedure because we wished to consider the
effects of Comptonization on phase lags intrinsic to the seed photons, and furthermore because the coronal structure in the linear
code wasfixed to that of our best fit non-linear model as presented in paper I. For the computation of the time lag, the pathlength of
the photon was integrated from its generation to the point where the photon was leaving the system. To avoid artificial phase lags

introduced by the size of the system, this latter point was defined to lie on a sphere encompassing the whole system.
The propagation of a large number (7.5 x 10a) of photons was followed until their statistical weights were very small. (Nearly all

photons had left the system within < 30 light crossing times.) A typical resulting output 'Compton shot' is shown in Figure 7. Note
that the shot has a narrow component occuring at early times and a broad component occuring at later times. This broad component
is partly attributable to reprocessing in the disk; it is the "echo" mentioned above. Properly normalized, the total shot is the transfer

function, d_t], described in eq. (l). Taking Fourier transforms of such shots, we were able to derive the theoretical time delays of §2
and §3. We took the Fourier transforms of analytic fits to the Compton shot profile in order to avoid spurious power, especially at

high Fourier frequencies, due to numerical counting noise. We found that the combination of two generalized gamma distributions,
specifically two Weibull distributions with a common start time, were excellent fits to all the shot profiles that we considered. A
sample fit is shown in Figure 7. We describe these distributions in more detail in the following appendix.
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FIG. 7.-- A Compton shot, for the Comptonization model of paper I, fit with two Weibull functions with a common starting time.
The x-axis is in units of the radial light crossing time of the sphere, and the y-axis is the number of photons exiting the system in a
restricted energy band at each time step.



12 RXTEObservationofCygnusX-1: III.

B. GENERALIZED GAMMA AND WEIBULL DISTRIBUTIONS

The probability density function of the generalized Gamma distribution is given by

°]a forx> 0

0 forx< 0 (2)

where

5I" (x) = t_-I e×p(-t) dt (3)

is Euler's Gamma function. The generalized Gamma distribution is one of the most studied probability density functions of statistics

since many of the important non-discrete density functions can be derived from/at'. For example, Pr(x; 2, V_, 0) is the one-sided
normal distribution, and Pr(x; 1,2, n/2-1)is the X 2 distribution. The properties of the generalized Gamma distribution are discussed
by Gran (1992) m whom the reader is referred for a more extensive discussion 7. Note that the generalized Gamma distribution used
here is a generalization of the Gamma distribution used by Kazanas, Hua & Titarchuk (1997), which has one parameter less.

In the special case of 7 = a - 1 the Gamma distribution is called a Weibull distribution. This distribution was first used in 1939 by
Waloddi Weibull as an empirical description for the distribution of the strength of materials to failure (Weibuli 1939). Since then,
the distribution has had a widespread use in many fields outside of engineering mechanics, e.g., to describe the mass distribution
of crushed materials (Brown & Wohletz 1995), to describe the distribution of the force amplitudes exerted by ocean waves onto
swimming platforms and oil rigs (Gran 1992), to describe the distribution of wind speeds to produce building codes (Whalen 1996),
and many others.

The probability density of the Weibull distribution is given by

a-I

= for x > Xl°]
0 for x < xl (4)

where a,/_ > 0. In many applications, the "threshold" or "location parameter" xl is implicitly set to zero (as has been done for the
generalized Gamma distribution above). For a > 1 the Weibull distribution looks similar to an asymmetric "bell curve", while for
a < 1 the distribution resembles an exponentially decaying function. Since a determines the shape of the distribution, it is often
called the "shape parameter". The parameter B is called the "scale parameter" since for a given a the variance of the distribution is
uniquely defined by ft.

The properties of the Weibuli distribution are discussed fully in Gran (1992). For our fits of the Compton shots we combined

two Weibull distributions, which were constrained to the same xl. Thus, including the absolute normalization of _Jkl and the relative
normalization of the two distributions, we had seven fit parameters. This yielded excellent fits for all of the Compton shots considered
for this work.
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